منابع مشابه
The numerical inversion of functions from the plane to the plane
This paper contains a description of a program designed to find all the solutions of systems of two real equations in two real unknowns which uses detailed information about the critical set of the associated function from the plane to the plane. It turns out that the critical set and its image are highly structured, and this is employed in their numerical computation. The conceptual background...
متن کاملThe geometric interpretation of inversion formulae for rational plane curves
Given a faithful parameterization P(t) of a rational plane curve, an inversion formula t = f(x,y) gives the parameter value corresponding to a point (x,y) on the curve, where f is a rational function in x and y. We investigate the relationship between a point (x*, y*) not on the curve and the corresponding point P(t*) on the curve, where t* = f(x*, y*). It is shown that for a rational quadratic...
متن کاملCompound Strip Method for Plane Stress
The compound strip method (CSM) for plates is an expansion of the finite strip method (FSM) and was developed to incorporate the effects of the support elements in the analysis of linear elastic plate systems. In this paper the CSM is further expanded to analyze structures such as stiffened plates under loads in the plane of the plate or the so called plane-stress condition. Examples of these t...
متن کاملEffect of Stress Triaxiality on Yielding of Anisotropic Materials under Plane Stress Condition
The triaxiality of the stress state is known to greatly influence the amount of plastic strain which a material may undergo before ductile failure occurs. It is defined as the ratio of hydrostatic pressure, or mean stress, to the von Mises equivalent stress. This paper discusses the effects of stress triaxiality on yielding behavior of anisotropic materials. Hill-von Mises’s criteria for anisot...
متن کاملINVERSION OF k-PLANE TRANSFORMS AND APPLICATIONS IN COMPUTER TOMOGRAPHY∗
The mathematics behind Computerized Tomography (CT) is based on the study of the parallel beam transform P and the divergent beam transform D. Both of these map a function f in Rn into a function defined on the set of all lines in Rn, by integrating f along these lines. The parallel and divergent k-plane transforms are defined in a similar fashion by integration over k-planes (i.e., translates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the London Mathematical Society
سال: 1901
ISSN: 0024-6115
DOI: 10.1112/plms/s1-34.1.134